-
Making the Brazilian ATR-72 Spin
by
No Comments
Note: This story was corrected on August 10th at 10:23 am, thanks to the help of a sharp-eyed reader.
Making an ATR-72 Spin
I wasn’t in Brazil on Friday afternoon, but I saw the post on Twitter or X (or whatever you call it) showing a Brazil ATR-72, Voepass Airlines flight 2283, rotating in a spin as it plunged to the ground near Sao Paulo from its 17,000-foot cruising altitude. All 61 people aboard perished in the ensuing crash and fire. A timeline from FlightRadar 24 indicates that the fall only lasted about a minute, so the aircraft was clearly out of control. Industry research shows Loss of Control in Flight (LOCI) continues to be responsible for more fatalities worldwide than any other kind of aircraft accident.
The big question is why the crew lost control of this airplane. The ADS-B data from FlightRadar 24 does offer a couple of possible clues. The ATR’s speed declined during the descent rather than increased, which means the aircraft’s wing was probably stalled. The ATR’s airfoil had exceeded its critical angle of attack and lacked sufficient lift to remain airborne. Add to this the rotation observed, and the only answer is a spin.
Can a Large Airplane Spin?
The simple answer is yes. If you induce rotation to almost any aircraft while the wing is stalled, it can spin, even an aircraft as large as the ATR-72. By the way, the largest of the ATR models, the 600, weighs nearly 51,000 pounds.
Of course, investigators will ask why the ATR’s wing was stalled. It could have been related to a failed engine or ice on the wings or tailplane. (more…)
-
How the FAA Let Remote Tower Technology Slip Right Through Its Fingers
by
No Comments
In June 2023, the FAA published a 167-page document outlining the agency’s desire to replace dozens of 40-year-old airport control towers with new environmentally friendly brick-and-mortar structures. These towers are, of course, where hundreds of air traffic controllers ply their trade … ensuring the aircraft within their local airspace are safely separated from each other during landing and takeoff.
The FAA’s report was part of President Biden’s Infrastructure Investment and Jobs Act enacted on November 15, 2021. That bill set aside a whopping $25 billion spread across five years to cover the cost of replacing those aging towers. The agency said it considered a number of alternatives about how to spend that $5 billion each year, rather than on brick and mortar buildings.
One alternative addressed only briefly before rejecting it was a relatively new concept called a Remote Tower, originally created by Saab in Europe in partnership with the Virginia-based VSATSLab Inc. The European technology giant has been successfully running Remote Towers in place of the traditional buildings in Europe for almost 10 years. One of Saab’s more well-known Remote Tower sites is at London City Airport. London also plans to create a virtual backup ATC facility at London Heathrow, the busiest airport in Europe.
A remote tower and its associated technology replace the traditional 60-70 foot glass domed control tower building you might see at your local airport, but it doesn’t eliminate any human air traffic controllers or their roles in keeping aircraft separated.
Inside a Remote Tower Operation
In place of a normal control tower building, the airport erects a small steel tower or even an 8-inch diameter pole perhaps 20-40 feet high, similar to a radio or cell phone tower. Dozens of high-definition cameras are attached to the new Remote Tower’s structure, each aimed at an arrival or departure path, as well as various ramps around the airport.
Using HD cameras, controllers can zoom in on any given point within the camera’s range, say an aircraft on final approach. The only way to accomplish that in a control tower today is if the controller picks up a pair of binoculars. The HD cameras also offer infrared capabilities to allow for better-than-human visuals, especially during bad weather or at night.
The next step in constructing a remote tower is locating the control room where the video feeds will terminate. Instead of the round glass room perched atop a standard control tower, imagine a semi-circular room located at ground level. Inside that room, the walls are lined with 14, 55-inch high-definition video screens hung next to each other with the wider portion of the screen running top to bottom.
After connecting the video feeds, the compression technology manages to consolidate 360 degrees of viewing area into a 220-degree spread across the video screens. That creates essentially the same view of the entire airport that a controller would normally see out the windows of the tower cab without the need to move their head more than 220 degrees. Another Remote Tower benefit is that each aircraft within visual range can be tagged with that aircraft’s tail number, just as it might if the controller were looking at a radar screen. (more…)
-
Thunderbird, Final Piston Bendix Trophy Race Winner
by
No Comments
Wandering among the flying machines that carpet the Oshkosh acreage during EAA AirVenture 2023, nothing of interest caught my eye until it spied an immaculate blue P-51C Mustang. On its flawless flanks, in sunshine-yellow letters was its name, Thunderbird. One of the storyboards standing in its shadow said it was “The Last Piston Driven Bendix Trophy Winner.”
This sparked a smoldering curiosity quest. I knew the Bendix Trophy was awarded to the winner of a transcontinental race because I remember reading in his book, Hollywood Pilot, how motion picture pilot Paul Mantz won the race after World War II, also in a surplus P-51C that he’d stripped of nonessential weight and modified with wet wing fuel to make his race nonstop.
But there was no way Thunderbird was Mantz’s Mustang wearing new paint. I found that race winner in 2017 at the Smithsonian Air & Space Museum’s Udvar-Hazy Center (see Same Plane, New Name & Accomplishments). As I crossed paths with the blue bird during AirVenture, more storyboards told its story. What they didn’t reveal is how it came to the collection of the Dakota Territory Air Museum in Minot and to Aircorps Aviation for its pristine restoration.
With enough sleuthing, one can find almost anything on the internet. It turns out that Warren Pietsch, second generation owner of Pietsch Aircraft Restoration & Repair, a P-51 aficionado since age 10, bought what he thought was a razorback P-51A in 1999 and trucked it home to Minot, North Dakota, from Scottsbluff, Nebraska. He layer discovered that it was the Thunderbird, which led to its restoration, documented in a series of Aircorps Aviation blog posts.
The airplane’s list of civilian caretakers starts April 15, 1948 with the Joe DeBona Racing Company, a partnership between the company’s eponym and the actor and pilot James M. Stewart, who usually went by Jimmy. On September 3, 1949, DeBona won the final Bendix Race to Cleveland, covering 2,008 miles in an elapsed time of 4:16:17.5, averaging 470.136 mph. Listed as the sole owner, Stewart sold Thunderbird to Jacqueline Cochran for “$1.00 and other considerations” on December 19, 1949. What those considerations might be isn’t articulated.
Ten days later, Cochran sets two FAI World Records and a US National Aeronautic Association record at an average speed of 703.275 kilometers per hour (436.995 mph). She sold the Mustang back to Stewart on January 20, 1953 for “$1.00 and other consideration” (again without hinting what the consideration might be). In June 1953, Thunderbird joined with Mantz’s Bendix-winning P-51C to form the P-51 Pony Express to fly film of Queen Elizabeth’s coronation across the pond. With DeBona at the controls, Thunderbird arrived 24 minutes ahead of Mantz’s Mustang.
Stewart sold Thunderbird to DeBona for “$1.00 plus a $7,500 Chatel Mortgage” on September 1, 1954. The internet has not yet revealed how it ended up in Scottsbluff, Nebraska. Learning about the Bendix Trophy Race was easier. The founder of the Bendix Corporation established the race in 1931 to inspire the creation of faster and more reliable aircraft. Associated with the National Air Races, Jimmy Doolittle won the inaugural race, flying the Laird Super Solution from Burbank, California, to Cleveland, Ohio, in 9:10:21.0, averaging 223.06 mph.
Two Bendix races flew from New York to Los Angeles, with Roscoe Turner, in a Wedell-Williams Model 44, winning the 1933 race and Louise Thaden and Blanche Noyes winning the 1936 race in a Beech CR-17 Staggerwing. The Seversky P-35, flown by different pilots, including Cochran in 1938, won the last races before World War II. The Bendix Race resumed in 1946, with Paul Mantz scoring a checkered-flag threepeat.
After Thunderbird won the final piston-powered race in 1949, only the jet class, introduced in 1946, continued. Flying different transcontinental routes, a P-80 won the first race in 1946, and a B-58 Hustler won the last race in 1962, covering the distance between LA and New York in 2:00:56.8. Ah, those were the days. And with the cessation of air racing at Reno, one wonders what’s next. — Scott Spangler, Editor
-
EAA AirVenture 2023: Change is the Only Constant
by
No Comments
In decades past, back when its moniker matched its location, one of Oshkosh’s primary draws was learning about new products and programs that their creators debuted on aviation’s primary stage, where an eager audience hungrily consumed every word and image. For those of us for whom Oshkosh was work, every day started at Press HQ, where we structured our day while looking at the week’s press conference matrix. Every available block of presentation time was filled with strips of paper announcing who and what, with each day’s primary announcements ensuring good attendance by offering a meal, either breakfast or lunch.
Time has diminished those days. It started around the time when Oshkosh became AirVenture and the internet started to replace Oshkosh as the deadline date for introducing a new product or program. Now these creators have a direct digital connection with curious consumers and we working press who help pass the word on what’s new. The press conference matrix for AirVenture 2023 was somewhat busy on Monday and Tuesday, but thereafter it was mostly barren, except for the end-of-day EAA briefing and Q&A session.
Most of the press conferences talked about things already announced online. In many cases, they might be considered footnotes that added or further explained the subject product or program, with the opportunity to ask questions and not have to wait for an answer by return email. If there was a surprise that united these media gatherings, it was that each of them, airframers, powerplants, props, avionics, and accessories, all addressed their efforts to develop and support their workforces.
Companies like Garmin and Piper have dedicated facilities for employee well-being and health services for employees and their families. Daher has an internship that sent two American college students to its TBM facilities in France and two French interns to its Kodiak facilities in Sand Point, Idaho. And Daher gets bonus points because it chose interns never interested in or involved with aviation. A journalist asked one of them, Alison Margarita, who’s pursuing an industrial engineering degree in Pennsylvania if she was now considering a career in aviation. Enthusiasm doesn’t begin to define the sincerity of her affirmative answer.
When exploring the grounds, many exhibitors clearly were trying to grow their respective workforces. Most of the major airlines, from Delta to Southwest, set up substantial chalets and in each of them, they were recruiting pilots, technicians, and dispatchers. Perhaps the biggest change among the exhibitors was Boeing, which erected a huge, air-conditioned chalet adjacent to the West Ramp, aka Boeing Plaza, that the company recently signed up to sponsor for some AirVentures into the future.
The Boeing chalet was also home to companies the aviation behemoth has purchased over the years, Jeppesen and ForeFlight, which has contributed to the trend consolidation of the industry. Financial realities and the retirement of baby boomers who founded aviation companies whose offspring are disinterested in taking over the family business are also contributing to the shrinking industry trend. And each year at AirVenture one sees the changes, some of them subtle, noticeable only by those who have previous experience with which to compare them.
An easy one was the move of the Federal Pavilion from a dedicated structure (which was one of the dedicated exhibit buildings before EAA built the four massive exhibit hangars) to cover a third of Exhibit Hanger D. The more subtle examples are positional juxtapositions one would not have seen a few years ago when an exhibitor had to be an aviation company to get a booth, especially one of the double-wide exhibit spaces at the end of a row. And this year a mattress company was offering its restful wares at the end of one row, and Pratt & Whitney was touting its latest PT-6 turboprop one row over.
Please do not misconstrue these observations as a curmudgeon’s rant, they are anything but. They are observations that give context to the passage of time and the inexorable changes that come with it. AirVenture this year celebrated several airplane birthdays, and more than once I heard “I can’t believe the RV-10 [or the anniversary airplane they were looking at] came out 20 years ago!”
This exclamation is usually followed with a question, “Where’d the time go?”
Socrates answered this question long ago when he observed that “The unexamined life is not worth living.” Bluntly put, it means people who pose this interrogative have not been paying attention to the life that envelopes them. They have not taken the time to recollect their experiences, taken the time to collate them and compare them in context, and contemplate what these examinations say about the future. — Scott Spangler, Editor
-
Updated AC Reiterates Nontowered Airport Procedures & Responsibilities
by
No Comments
Back in the day, airports without air traffic controllers working to maintain order and predictable behavior from the pilots flying to and from it were often referred to as “uncontrolled” because they did not have an air traffic control tower, or the tower was outside its operating hours. Because “uncontrolled” implied chaotic, unpredictable aircraft operations at these aerodromes, the FAA and attuned educators started referring to them as “nontowered” airports. They supported this more precise moniker because the FAA proffered operational guidance to pilots that, if followed, would bring some predictable order to this chaos. In its never-ending effort to achieve this goal, the FAA issued on June 6, 2023, an updated Advisory Circular 90-66C, Non-Towered Airport Operations.
Most of its 28 pages reiterate the regulatory requirements, recommended operations, and communication procedures pilots should embrace when flying to and from nontowered airports. The changes to this guidance “reflect current procedures and best practices” when pilots are not directed by a tower controller. (Not that a controller ensures failsafe airport operations, given the recent spate of runway incursions and frantic calls to abort takeoffs and landings at various terminal hubs.)
What reading each of the AC’s 28 pages makes clear is that flying to and from a nontowered airport is significantly more involved and complex than radioing the tower (or approach control) at the appropriate time and place and then letting the controller lead you by the hand, so to speak, to a safe landing. Absent this guidance, pilots should read the 28 pages, follow its guidance, and remember to keep their respective heads on traffic-scanning swivels to see—and avoid!—those pilots who have not bothered with the necessary nontowered airport preparations. They should not become complacent and depend on other pilots to announce their positions and operational intentions. Not all nontowered airport denizens are equipped with radios.
To ratchet up the nontowered airport complexity, add ultralights, gliders, and parachute jumpers to the mix of traffic. When you get right down to it, flying to and from a nontowered airport is the ultimate test of a pilot’s aeronautical knowledge, aeronautical decision-making, and ceaseless see-and-avoid searches of the surrounding airspace. Put another way, towered and non-towered operations are akin to VFR and IFR flight. Perhaps, one day, if pilots don’t fully accept the responsibility involved, the FAA will establish a nontowered airport rating to operate at them. — Scott Spangler, Editor