-
Making the Brazilian ATR-72 Spin
by
No Comments
Note: This story was corrected on August 10th at 10:23 am, thanks to the help of a sharp-eyed reader.
Making an ATR-72 Spin
I wasn’t in Brazil on Friday afternoon, but I saw the post on Twitter or X (or whatever you call it) showing a Brazil ATR-72, Voepass Airlines flight 2283, rotating in a spin as it plunged to the ground near Sao Paulo from its 17,000-foot cruising altitude. All 61 people aboard perished in the ensuing crash and fire. A timeline from FlightRadar 24 indicates that the fall only lasted about a minute, so the aircraft was clearly out of control. Industry research shows Loss of Control in Flight (LOCI) continues to be responsible for more fatalities worldwide than any other kind of aircraft accident.
The big question is why the crew lost control of this airplane. The ADS-B data from FlightRadar 24 does offer a couple of possible clues. The ATR’s speed declined during the descent rather than increased, which means the aircraft’s wing was probably stalled. The ATR’s airfoil had exceeded its critical angle of attack and lacked sufficient lift to remain airborne. Add to this the rotation observed, and the only answer is a spin.
Can a Large Airplane Spin?
The simple answer is yes. If you induce rotation to almost any aircraft while the wing is stalled, it can spin, even an aircraft as large as the ATR-72. By the way, the largest of the ATR models, the 600, weighs nearly 51,000 pounds.
Of course, investigators will ask why the ATR’s wing was stalled. It could have been related to a failed engine or ice on the wings or tailplane. (more…)
-
How the FAA Let Remote Tower Technology Slip Right Through Its Fingers
by
No Comments
In June 2023, the FAA published a 167-page document outlining the agency’s desire to replace dozens of 40-year-old airport control towers with new environmentally friendly brick-and-mortar structures. These towers are, of course, where hundreds of air traffic controllers ply their trade … ensuring the aircraft within their local airspace are safely separated from each other during landing and takeoff.
The FAA’s report was part of President Biden’s Infrastructure Investment and Jobs Act enacted on November 15, 2021. That bill set aside a whopping $25 billion spread across five years to cover the cost of replacing those aging towers. The agency said it considered a number of alternatives about how to spend that $5 billion each year, rather than on brick and mortar buildings.
One alternative addressed only briefly before rejecting it was a relatively new concept called a Remote Tower, originally created by Saab in Europe in partnership with the Virginia-based VSATSLab Inc. The European technology giant has been successfully running Remote Towers in place of the traditional buildings in Europe for almost 10 years. One of Saab’s more well-known Remote Tower sites is at London City Airport. London also plans to create a virtual backup ATC facility at London Heathrow, the busiest airport in Europe.
A remote tower and its associated technology replace the traditional 60-70 foot glass domed control tower building you might see at your local airport, but it doesn’t eliminate any human air traffic controllers or their roles in keeping aircraft separated.
Inside a Remote Tower Operation
In place of a normal control tower building, the airport erects a small steel tower or even an 8-inch diameter pole perhaps 20-40 feet high, similar to a radio or cell phone tower. Dozens of high-definition cameras are attached to the new Remote Tower’s structure, each aimed at an arrival or departure path, as well as various ramps around the airport.
Using HD cameras, controllers can zoom in on any given point within the camera’s range, say an aircraft on final approach. The only way to accomplish that in a control tower today is if the controller picks up a pair of binoculars. The HD cameras also offer infrared capabilities to allow for better-than-human visuals, especially during bad weather or at night.
The next step in constructing a remote tower is locating the control room where the video feeds will terminate. Instead of the round glass room perched atop a standard control tower, imagine a semi-circular room located at ground level. Inside that room, the walls are lined with 14, 55-inch high-definition video screens hung next to each other with the wider portion of the screen running top to bottom.
After connecting the video feeds, the compression technology manages to consolidate 360 degrees of viewing area into a 220-degree spread across the video screens. That creates essentially the same view of the entire airport that a controller would normally see out the windows of the tower cab without the need to move their head more than 220 degrees. Another Remote Tower benefit is that each aircraft within visual range can be tagged with that aircraft’s tail number, just as it might if the controller were looking at a radar screen. (more…)
-
AirVenture Preflight: Go/No-Go 2024
by
No Comments
Making a pragmatic go/no-go decision is the goal of preflight preparation. Regardless the destination or activity one must weigh all the participating variables. These can change because life is dynamic and our goals, priorities, and individual capabilities transform with time.
Preparing my inaugural journey to Oshkosh in 1978, my primary preflight variables were getting time off work and/or school to make the weekend speedrun from Illinois or Missouri. The weather seasoned the road trip and cow pasture camping accommodations.
In 1989, Oshkosh was a weeklong business trip, and my variables became the transportation and booth distribution of 5,000 Flight Training magazines. In 2000, I was on the other side of AirVenture and involved in preparing for the event, which entailed different challenges.
Preflighting for AirVenture 2007 as a self-employed word merchant was most liberating. My variables were connected to my eclectic curiosity while prospecting on behalf of my clients, including JetWhine.com.
Covid canceled everyone’s 2020 preflight, but I still got an unexpected variable, my Oshkosh Roaming Range. I averaged about 15 miles a day, but Parkinson’s has progressively reduced it. Today it’s barely 2.5 miles, a one-way walk from a pasture parking spot to show center.
So AirVenture 2024 is a no-go, and I’m okay with that because I appreciate the 45 Oshkosh adventures that preceded it and everyone who made them special, especially Rob Mark, JetWhine’s illustrious publisher.
It is another life transition point, one reinforced by trashcan karma. Over the years I’ve tallied my trips with EAA’s Champion stickers. 2023 filled the last open spot, so with my trashcan full, I guess I’ll call it career. Thanks to all who made the time to read. Scott Spangler, Editor
-
Flight Planning Demands a Dose of Common Sense
by
No Comments
Decades ago, when I learned to fly, it was well-known that a commercial co-pilot/first officer was allowed to occupy the right seat of a transport airplane only if they’d proven themselves subservient enough to understand that the guy in the left seat was perfectly capable of handling the airplane all by himself.
Captains believed the FO was only there to check a regulatory box. If the co-pilot was lucky, the captain might let them work the radios and help with a few navigational duties, but the phrase “Gear up and Shut up” was considered a normal cockpit environment.
Questions, opinions, or ideas from the right seat were not welcomed. If the FO had learned anything, it would have been by accident. And there were plenty of accidents; a few airliner crashes a month, while tragic, were not unheard of.
In 1979, a pivotal moment in aviation history occurred when NASA psychologist John Lauber’s research team revealed that human error was the cause of nearly 75 percent of commercial aviation accidents. This finding highlighted the role of communication, decision-making, and leadership in cockpit behavior and the resulting accidents. It also led to the birth of cockpit resource management (CRM); a process designed to train crews to utilize all the flight deck’s human resources effectively. CRM became a leading force in preventing ‘pilot error’ and reducing accidents. Pilots actually began talking with each other before making any life-or-death decisions. Later, the Commercial Aviation Safety Team (CAST) combined with CRM (now called crew resource management) led to a global reduction of air carrier accidents. There hasn’t been a fatal air carrier accident in the US since 2009.
Despite the incredible improvements in commercial aviation safety, the same cannot be said for general aviation. The fatal accident statistics remain alarming despite the dedicated efforts and safety enhancements from groups like the General Aviation Joint Safety Committee (GAJSC). Nearly 50 years after NASA’s groundbreaking research, most accidents in non-airliner flights are still attributed to pilot error, indicating that much work is yet to be done in this sector.
Hawker Accident at Aspen
On February 21, 2022, the crew and four passengers aboard a Hawker 800 nearly lost their lives when the twin-engine business jet sailed off the end of Runway 33 into soft snow at Aspen Pitkin County Airport (ASE), Colorado, during its takeoff run. The aircraft sustained substantial damage to the right wing and fuselage.
Unique to this accident was the wind that morning. “The ATIS indicated the wind was from 170° at 18 knots and gusting to 30 knots,” according to the NTSB’s final report. That represented nearly a direct tailwind at takeoff. The Hawker certification limits the aircraft to a tailwind component of no more than 10 knots for landing or takeoff.
I took a special interest in this accident because I’ve flown in and out of ASE many times and also flew the Hawker 800. (more…)